

Möglichkeiten und Grenzen der Gülleverwertung im Ackerbau

oder

So kann möglichst viel Gülle umweltverträglich in einer (Überschuss-)Region verwertet werden!

Dr. Ludger Laurenz, Kreisstelle COE/RE/BOR Beratung Pflanzenproduktion/Biogas

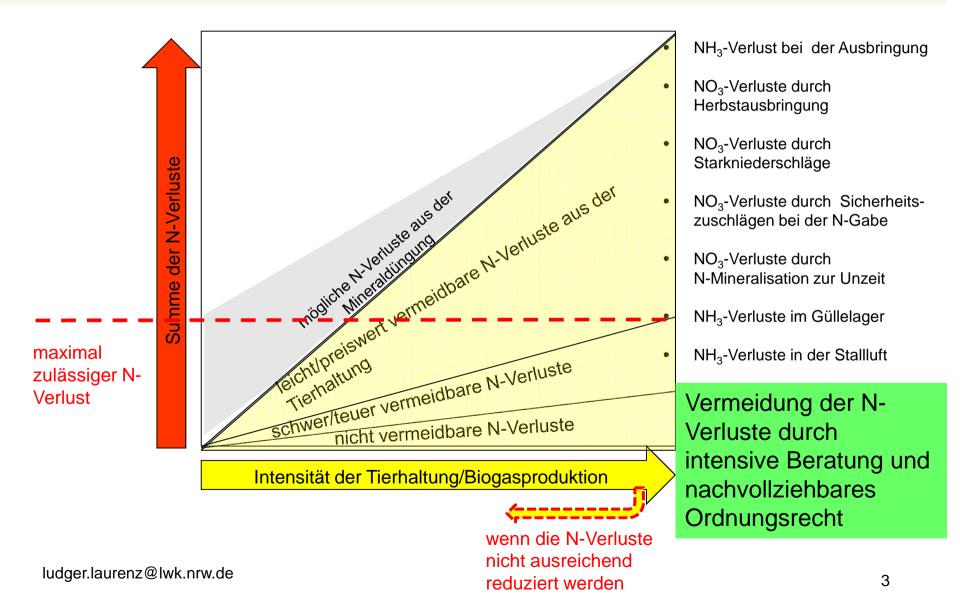

Auswirkung der überschüssigen Nährstoffe an den Stränden in China

Bild von Fridtjof de Buisonjé <u>fridtjof.debuisonje@wur.nl</u> Wageningen UR Livestock Research, the Netherlands

Mit zunehmender Intensität der Tierhaltung/Biogasproduktion in einer Region steigen die N-Verluste und "kollidieren" umso stärker mit N-Verlustgrenzen für Nitrat und Ammoniak (modellhaft)

Das Mineraldüngeräquivalent ist ein Maßstab für die Effizienz des Gülle-/Wirtschaftsdüngereinsatzes (an 4 Beispielen demonstriert)

Der N-Sollwert ist aus zahlreichen Feldversuchen klar definiert z.B. für Mais 180 kg/ha N incl. Nmin

		Betrieb 1	Betrieb 2	Betrieb 3	Betrieb 4
N-Sollwert 180	kg/ha	180	180	180	180
Nmin (z.B.)	kg/ha	30	30	30	30
N-Düngungsbedarf	kg/ha	150	150	150	150
Mineraldüngeraufwand	kg/ha	0	30	60	90
in den 4 Betrieben	Kg/IIa	O	30	80	90
Wirkungsanteil aus Gülle (von 170 kg/ha)	kg/ha	150	120	90	60
Mineraldüngeräquivalent MDÄ	%	88	71	53	35
Potentielle Umweltbelastung durch Gülle					
(Mehrbelastung gegenüber	kg/ha	20	50	80	110
Mineraldünger)					

Am Mineraldüngeraufwand erkennt man die Effizienz des Wirtschaftsdüngereinsatzes

Das in Versuchen unter optimalen Bedingungen erzielte MDÄ ist der Maßstab für die Effizienz des Gülle-/Wirtschaftsdüngereinsatzes im Betrieb

Ergebnisse von 11 Feldversuchen mit der dünnen und festen Fraktion

aus Gülle zu Winterweizen (nach Birkmose 2010, DK)

Varianten (Werte in kg N/ha)	N-Entzug Korn kg/ha	Kornertrag t/ha	Mineraldünger- äquivalent MDÄ in % bezogen auf Gesamt-N
Ungedüngt	50	3,51	
150 mineralisch im Frühjahr	119	7,39	
100 N-gesamt aus Feststoff <i>Herbst</i> + 150 Mineral-N	103	7,21	18
100 N-gesamt aus Feststoff <i>Frühjahr</i> + 100 Mineral-N	109	7,37	29
100 NH ₄ -N in Dünne Fraktion aus Sep. + 50 Mineral-N Schleppschlauch	117	7,57	78
100 NH ₄ -N in Dünne Fraktion aus Sep. + 50 Mineral-N <i>Injektion</i>	125	7,61	89

Table 16: Danish recommendations for utilisation percentage of nitrogen in pig slurry, cattle slurry, digested slurry and liquid fraction depending on time of the year, application method and crop type. (Source: Birkmose, 2009b).

	•	Spring		Sun	mer	Autumn		
Sahwainagülla	Pig slurry	Injected	Trailing hoses	Injected	-Trailing hoses	Before sowing	In growing crop	
Schweinegülle	Spring seed	75	70	-	45	-	-	
	Beet or maize	75	70	70	40	-		
	Winter cereal	70	65	-	65	-	-	
	Winter rape	-	65	-	-	65	55	
	Grass	60	60	55	45	-	55	
	Cattle slurry	Injected	Trailing hoses	Injected	Injected	Before sowing	In growing crop	
	Spring seed	70	50	-	35	-		
	Beet or maize	70	55	60	35	-		
	Winter cereal	55	45	1 -	40	-	-	
	Winterrape	-	45	-		50	35	
	Grass	50	45	45	35	-	40	
	Digested slurry	Injected	Trailing hoses	Injected	Injected	Before sowing	In growing crop	
	Spring seed	75	70	-	50	-	-	
	Beet or maise	75	70	70	45	-	-	
	Winter cereal	75	75	-	65	-		
	Winter rape	-	75		-	65	55	
	Grass	70 .	65	60 . 1	45	-	. 60 , .	
Dünne Fraktion	Liquid fraction	Injected	Trailing hoses	Injected	Injected	Before sowing	In growing crop	
	Spring seed	90	90	-	70	-	-	
aus der Separation	Beet or maize	90 -	90	90	70	-	-	
	Winter cereal	90	85	-	85	-		
	Winter rape		85	-	-	85	70	
	Grass	80	75	75	65		70	

Landwirtschaftskammer Nordrhein-Westfalen

Bijlage 2: Stikstofwerkingscoëfficiënten voor de periode 2010-2013

	Omstandigheid	2008/9	2010	2011	2012	2013	
Najaarsaanwending	Aangevoerde en eigen drijfmest	50/v	V	V	v	V	
dierlijke mest op	Vaste mest, varkens, pluimvee en	30	30	30	30	30	
kleibouwland en	nertsen						
veenbouwland	Vaste mest overige dieren	35/55	35/55	35/55	35/55	35/55	
Op het eigen bedrijf	Op eigen bedrijf grasland	45	45	45	45	45	
geproduceerde mest	Klei en veen						NII
(drijfmest of vaste mest)	Op eigen bedrijf grasland, zand en	45	45	45	45	45	
van graasdieren	löss						
	Id. zonder beweiding	60	60	60	60	60	
Andere	Dunne fractie (na mestbewerking)	80	80	80	80	80	dünne Fraktion
	en gier						
	Drijfmest op klei en veen (m.u.v.	60	60	60	60	60	Gülle auf Lehm und Moo
	runder-)		ï				
	Drijfmest op zand en löss (m.u.v.	65	70	70	70	70	Gülle auf Sand und Löss
	mades)		-				
	Runderdrijfmest (alle grondsoorten)	65				6 0	
	Vaste mest van varkens, pluimvee	55	55	55	55	55	
* * * * * * * * * * * * * * * * * * * *	en nertsen	. : :			·. '.'		
	Vaste mest van overige diersoorten	40	40	100	40	40	
	Champost	25	.25		25	25	
•	Zuiveringsslib	40	40		40	40	
•	Overige organische meststoffen	50	50		50	50	
	Veen : : : : : : : : :	0	. 0	0	0	0	
Mengsels van	Voor mengsels geldt de		. :				
meststoffen	werkingscoëfficiënt van de meststof		1. "				
	met de hoogste werkingscoëfficiënt	· :					
	die het mengsel bevat	. :			: '		

So ist zum Beispiel heute der Mineraldüngerzukauf in NL geregelt:

kg/ha N

	1.6/ 1.0. 1.
	Sand/Löss
Düngungsobergrenze für Mais	140
Gülle im Betrieb bleibend	
170 kg/ha N x 70 % MDÅ	119
Restzufuhr für mineralischen N	
(Das wird streng kontrolliert)	21

Es gibt noch erhebliche Reserven, die Effizienz des Gülle/Wirtschaftsdüngereinsatzes zu verbessern...

Mann ist in der Praxis teilweise schon weiter als in den heutigen Verordnungen vorgegeben ist...

z.B. Gülleinjektion im Strip-Till-Verfahren mit sehr hoher N-Effizienz

In den Nährstoffüberschussregionen besteht das Problem heute nicht mehr im zu hohen Gülleeinsatz

(die Gülleüberschüsse werden durch den hohen Kontrolldruck und die Dokumentationsverpflichtungen inzwischen gut aus den Betrieben exportiert)

Das Problem besteht heute noch im zu hohen Mineraldüngereinsatz. Wir benötigen Verordnungen, die den Mineraldüngereinsatz soweit begrenzen, dass die Landwirte sich gezwungen sehen, den Wirkungsgrad der Gülle/Wirtschaftsdünger zu optimieren.

So kann möglichst viel Gülle umweltverträglich in einer (Überschuss-)Region verwertet werden!

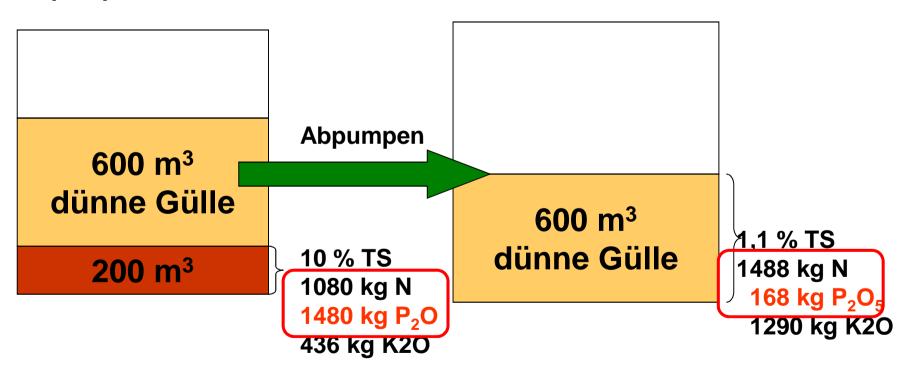
Auch so kann möglichst viel Gülle umweltverträglich in einer (Überschuss-)Region verwertet werden!

> Das N-P-Verhältnis im Export optimieren

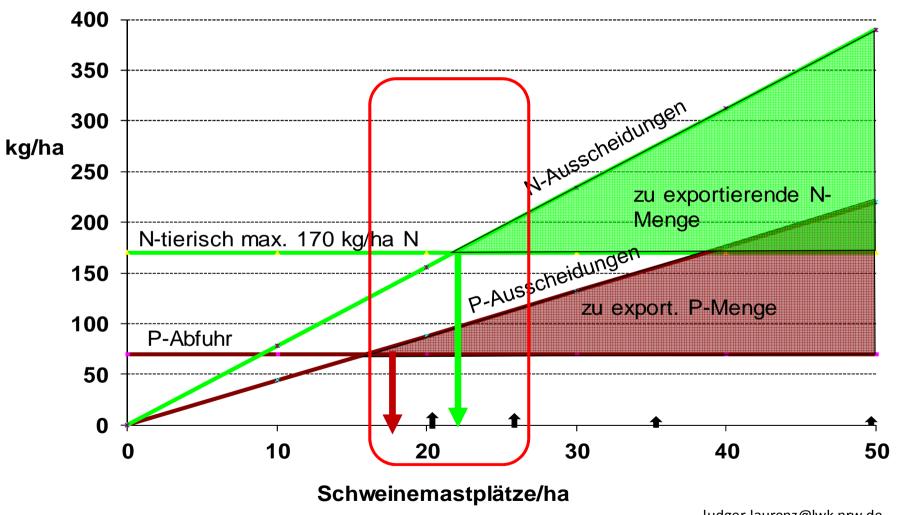
Mechanische Trenntechnik: Der erste Schritt in der Gülleverarbeitung

Schneckenpresse Filter:

Geringe Trennleistung (30% P) Billig (€ 30.000) Geringer Energieverbrauch Weniger Wartung Geringe Kapazität

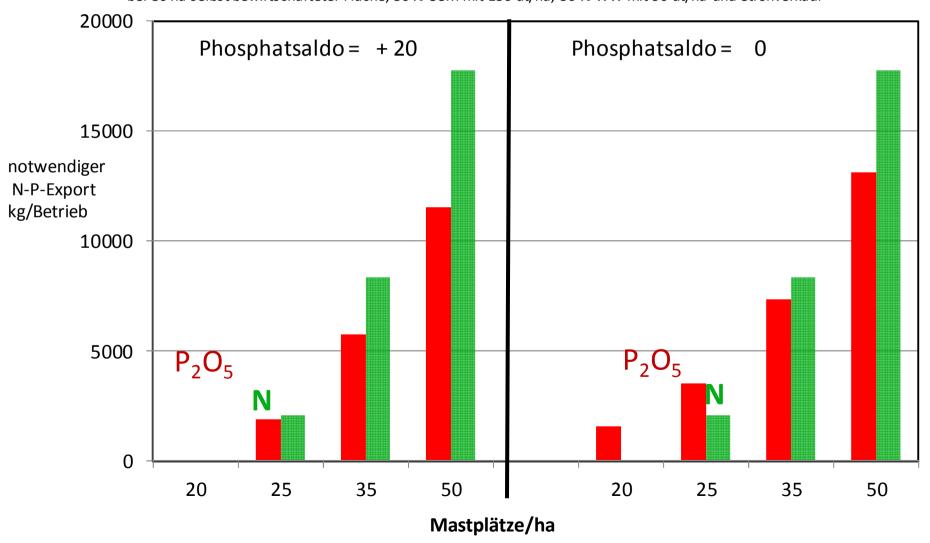

Decanter Zentrifuge:

Höhere Trennleistung(60% P)
Teuer (€ 200.000)
Höheren Energieverbrauch
Mehr Wartung
Höhere Kapazität


Besonderheiten bei Schweinegüllen: über Sinkschichten:

Sauengülle Abpumpen der dünnen Gülle

Wann Iohnt Separation mit starker P-Anreicherung im Feststoff?



Notwendiger Phospat- und Stickstoffexport in der Schweinemast

je nach Tierbesatz und P-Saldo ändert sich das N:P-Verhältnis

bei 80 ha selbst bewirtschafteter Fläche, 50 % CCM mit 150 dt/ha, 50 % WW mit 90 dt/ha und Strohverkauf

Kostenstellen des Nähi			Landwirtschaftskammer				
Mastschweineprodukti	on (P-S	ald	do =	= 0)		S	so kann möglichst viel
N P2O					ülle umweltverträglich		
Export n. EDV-Nährstoffvergleich kg/Betrieb 8352 730				7360		i	n einer (Überschuss-)
Gülleanfall insgesamt	m³			4200		Re	gion verwertet werden!
Eigene Fläche	ha			80			Das N-P-Verhältnis im
Gülleexportkosten	€/m³			14			Export optimieren
Exportkosten über			Roh	gülle	Sinkschich	t	
zu exportieren	m³			2.300	1.065		-1.235
				55%	25%		-30%
Kosten eigene Ausbringung	€/Betrie	b		4.750	7.838		3.088
Exportkosten für Transport	€/Betrie	b		32.200	14.905		-17.295
Mineraldüngerersatzkosten	€/Betrie	b		6.460	0		-6.460
	Summe)	43.	410 €	21.877		-21.533
Im Betrieb bleibender P205	kg/ha			76	74		
Im Betrieb bleibender N-Gesamt	kg/ha			124	170		46
Im Betrieb bleibender NH4-N	kg/ha			87	119		32
Im Betrieb bleibender K2O	kg/ha			90	149		59

Mastschweineproduktion: Kosten des Nährstoffexportes								
in Abhängigkeit von:	Mastplätze	/ha						
	Gülleanfall	/Platz						
	P-Saldo na	ch Düngevei	rordnung					
Betreibsfläche: 80 ha								
50 % CCM-Mais mit 150 dt/ha, 50 % WW mit 90 dt/ha und Strohverkauf								
Sinkschicht: N x 1,5; P2O5 x 2,	3 zu Rohgül	le						
Separation: Mobiler Dekanter, S	Separierung	aus der Sin	kschicht, 6 €/m³					
Rohgülle	14	€/m³	Exportkosten					
Sinkschicht	14	€/m³	ZAPOT ENGOCETT					
Dünne Gülle über Sinkschicht	12	€/m³						
Dünne Gülle nach Separation	10	€/m³						
Feststoff-Exportkosten	0	€/t						

Mastschweine: Kosten des Nährstoffexportes in €/Platz									
Г	Mastplätze/ha	20	25	35	50				
Mastplätze im B	Setrieb (80 ha)	1600	2000	2800	4000				
1,5 m³/Platz	Rohgülle	0	8	12	15				
N x 1,5 P x 2,2	Sinkschicht	0	5	8	10				
P-Saldo +20	Separation	0	6	10	13				
1,5m³/Platz	Rohgülle	8	12	13	15				
N x 1,5 P x 2,2	Sinkschicht	6	7	8	10				
P-Saldo 0	Separation	5	6	10	13				

P-Saldo +20

P-Saldo 0

(Der Export der Sinkschicht schlägt meist die Feinseparierung)

Zusätzlicher Flächenbedarf bei Anrechnung des pflanzlichen N auf die N-Obergrenze (Biogasanlagen 2012)

Mögliche Konsequenzen für das Westliche Münsterland:

Die verfügbare Fläche für tierischen N wird dramatisch kleiner

Deshalb muss deutlich mehr Gülle-/Wirtschaftsdünger-N aus der Region exportiert werden

Deshalb lohnt die Aufkonzentration von Phosphat und die damit verbundene technische Verarbeitung der Gülle in Zukunft eventuell weniger

ludger.laurenz@lwk.nrw.de