

PSW-Energiesysteme GmbH Fischerstraße 93, 29227 Celle

Referent: Mersid Huskic (Dipl.-Wirt.-Ing.)

Unternehmensstruktur

Rechtsform und Geschäftsfeld:

Die Firma **PSW-Energiesysteme GmbH** mit Sitz in Celle wurde am 13. Dezember 2007 gegründet. Die Geschäftsfelder sind die **Entwicklung und Produktion von umweltfreundlichen,** hocheffizienten dezentralen Energieerzeugungsanlagen aus den Bereichen Windenergie, Kraft-Wärmekopplung und Wärmepumpentechnik.

Zur Zeit sind **10 Mitarbeiter** in den Bereichen (F&E, Produktion und Vertrieb/Marketing) beschäftigt, zuzüglich 4 temporär beschäftigte Mitarbeiter für die Fertigung/Produktion.

Als deutscher Hersteller der **EN-Drive® 2000 Klein-Windkraftanlagen** hat PSW mit einem Anteil von 80% Eigenfertigung eine sehr hohe Wertschöpfung im Vergleich zu Wettbewerbern.

Gründungsgesellschafter:

- Dipl.-Ing. John Piper, Uetze
- Dr. Hartwig Schwieger, Celle
- Torsten Wichmann, Langlingen

Unternehmensstruktur

Standort:

- Stammhaus
 Fischerstraße 93, 29227 Celle
- Produktionsstätte (Halle 900 m² + Gewerbeland 12.000 m²) Bruchkampweg 22, 29227 Celle (Gewerbegebiet)

Partnerschaften:

Fa. Koralewski Industrie – Elektronik oHG, Hambühren (Elektronikunternehmen mit 20 Mitarbeitern)

deutschlandweites Vertriebs- und Servicenetz aus Fachhändlern und Servicebetrieben

Mitgliedschaften:

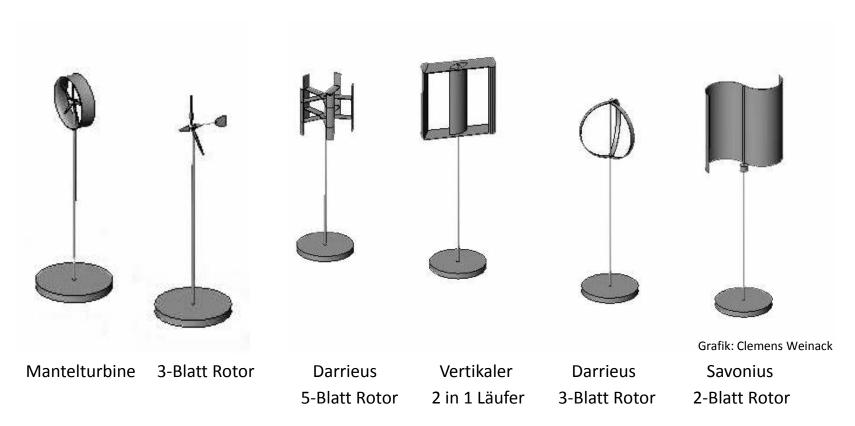
- BVKW Bundesverband für Kleinwindanlagen e.V.
 (Dr. Hartwig Schwieger ist im Vorstand dieses Verbandes)
- BWE Bundesverband für Windenergie e.V.

Definition Klein-Windkraftanlagen

Das **EEG** zieht bei Anlagen mit einer installierten Leistung bis zu 30kW die Grenze für die private Eigenversorgung (§ 5 Abs. 1 S. 2 EEG).

Unter die **DIN EN 61400-2:2007** "Windenergieanlagen, Teil 2: Sicherheit kleiner Windenergieanlagen" fallen WEA, deren überstrichene Rotorfläche kleiner als 200m² ist. Daraus ergibt sich eine maximale Leistung von etwa 50 bis 70kW.

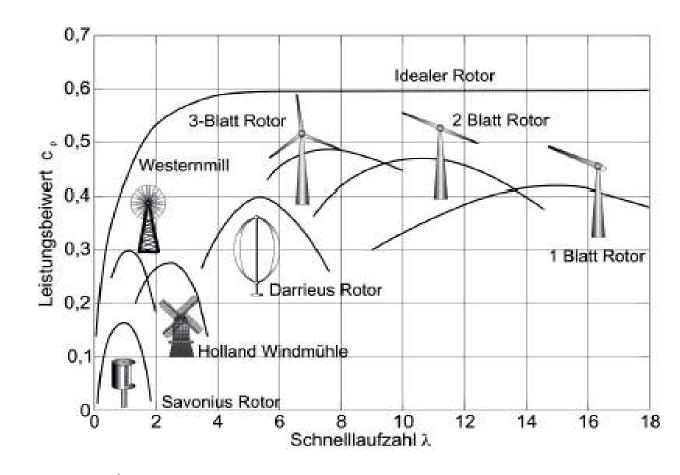
Der **Bundesverband Kleinwindanlagen (BVKW)** setzt bei der DIN EN 61400-2:2007 an Rotorfläche kleiner als 200m² – und differenziert dann zwischen


- Mikro-Windturbinen (maximal 1,5kW Nennleistung bzw. 6m² Windangriffsfläche)
- Hausanlagen auf dem Dach oder direkt mit dem Haus verbunden als Nebengebäude ohne Größenbeschränkungen dem Gebäude angepasst
- Kleinwindanlagen zur Selbstversorgung bis einschließlich 6kW Nennleistung
- Kleinwindanlagen bis maximal 200m² Windangriffsfläche (EN 61400-2)

Rotortypen:

Horizontalrotoren:

Vertikalrotoren:



Merke: Doppelte Windgeschwindigkeit = 8 - facher Ertrag

Doppelter Rotordurchmesser = 4 - facher Ertrag

Effizienz von Windkraftanlagen

Der cp-Wert / Leistungsbeiwert ist

maßgebend für den Ertrag einer Anlage:

H-Rotor: ca. 0,25 Savonius: ca. 0,1 Horizontalläufer: ca. 0,4 Die Schnelllaufzahl λ gibt das Verhältnis der Umfangsgeschwindigkeit am äußeren Ende des Rotors (Blattspitze) zur Windgeschwindigkeit an.

Erneuerbare-Energien-Gesetz (EEG)

EEG für Windenergie:

EEG 2009:

§ 16 EEG, Absatz 1 "Netzbetreiber müssen Anlagenbetreiber vergüten"

§ 21 EEG Dauer - 20 Jahre

§ 29 EEG Windenergie

Absatz 1: 5,02 Cent Vergütung

Absatz 2: 9,2 Cent Anfangsvergütung für 5 Jahre

Absatz 3: bis 50 KW muss immer vergütet werden

Ziele EEG 2012:

Anpassung der Einspeisevergütung, Staffelung je nach Rotorfläche

Alternativ: Angleichung an PV oder bilanzierende Stromrechnung (Dänemark)

Ergebnis EEG 2012:

Die Vergütung für die Netzeinspeisung 8,7 Cent/kWh (2014) wird für KWEA bis 50 kW auf 20 Jahre festgesetzt.

Aktuell sind Kleinwindkraftanlagen <u>nur mit hoher Eigenbedarfsquote wirtschaftlich zu betreiben!</u>

Potenzielle Interessenten müssen nach dem Strombedarf die passende Anlagengröße dimensionieren.

Baurecht / Genehmigungsverfahren

Keine Bauantragspflicht: Verfahrensfreistellung / Anzeigepflicht

NRW: § 65 I Nr. 44b) und § 65 II Nr. 4 LBO NRW KWEA bis zu 10 m Höhe

Baden-Württemberg: § 50 Abs. 1 LBO BW Nr. 22 Anhang – KWEA bis 10 m Nabenhöhe

Bayern: § 57 Abs. 1 Nr. 3b) KWEA bis 10 m Höhe Rotorblattspitze

Sachsen-Anhalt: § 60 Abs. 1 Nr. 4f) BauO LSA – KWEA bis 10 m Nabenhöhe

Schleswig-Holstein: Verfahrensfreiheit für KWEA bis 10m Höhe (in Planung für April 2014)

Merke: Folgende Regelungen müssen immer eingehalten werden!

Bauordnungsrecht: Abstandsflächenrecht bei offener Bauweise (i.d.R. 1 x Anlagenhöhe)

Bauplanungsrecht: § 30 ff. BauGB, § 14 BauNVO

Immissionsschutzrecht: § 22 BlmSchG, TA Lärm

Naturschutzrecht: Arten-, Natur-, Gebietsschutz

Baurecht / Genehmigungsverfahren

§35, Absatz 1 - Bauen im Außenbereich

Grundsätzlich sind Land-und Forstwirte gemäß §35, Absatz 1 privilegiert, so dass sie Kleinwindanlagen unter folgenden Voraussetzungen im Außenbereich aufstellen können:

- Vollerwerbslandwirt (aktiver landwirtschaftlicher Betrieb)
- Zu-und Unterordnung zum Betrieb (Anlagengröße muss der Betriebsgröße entsprechend sein bzw. dem Betrieb räumlich zu- und untergeordnet sein)
- <u>Dienlichkeit</u> (mindestens 50% des von der Anlage erzeugten Stroms müssen im Eigenverbrauch genutzt werden - Anlagenleistung muss der Betriebsgröße entsprechend sein)

PSW-Kleinwindkraftanlage EN-Drive® 2000 Serie

EN-Drive® - Windkraftanlagen zur Erzeugung von Strom und Wärme

EN-Drive 2000.3 (verzinkte Ausführung) EN-Drive 2000.3 (beschichtete Ausführung)

Leistungsklasse: 3,0-10,0 kW Leistungsklasse: 10,0-15(20) kW

Nabenhöhen: 7,4 – 13,0 m Nabenhöhen: 10,0 – 19,0 m

Bauhöhen: 10,0 – 16,5 m Bauhöhen: 15,0 – 24,0 m

Rotordurchmesser: $3.0 / 5.2 / 7.1 \,\mathrm{m}$ Rotordurchmesser: $7.1 / 8.5 / 10.0 \,\mathrm{m}$

Einsatz: Privat, Gewerbe Einsatz: Landwirtschaft, Gewerbe

Ertrag (4-6 m/s): 3.000 - 20.000 kWh/a Ertrag (4-6 m/s): 6.000 - 30.000 kWh/a

Richtpreise: 20.000 − 38.000 € Richtpreise: 40.000 − 50.000 €

Produktneuheiten in 2014:

Markteinführung der 20 kW Anlage und dem 10 m Rotordurchmesser Markteinführung einer 10 m hohen Anlage mit einer Leistung von 3/4kW (Verfahrensfreiheit S-H)

PSW-Kleinwindkraftanlage EN-Drive® 2000 Serie

Nutzungsvarianten

- Stromversorgung im Netzparallelbetrieb (Eigenverbrauch und Netzeinspeisung)
- Wärmeerzeugung mit Elektrowärmepumpe
- ➤ Wärmeerzeugung mit Heizpatrone + Warmwasserspeicher

Einsatzzwecke

- > Energieversorgung von landwirtschaftlichen Betrieben und Biogasanlagen
- > Energieversorgung von öffentlichen Gebäuden
- Energieversorgung von privaten Haushalten
- > Energieversorgung von Gewerbebetrieben (produzierende Betriebe)

PSW-Kleinwindkraftanlage EN-Drive® 2000 Serie

Technologie

- Technologie und Sicherheitstechnik gemäß der DIN EN 61400-2
- CE-konforme Anlage auf dem neusten Stand der Technik
- Anforderungen Netzanschluss Erzeugungsanlagen nach VDE-AR-N 4105
- > Daten-Fernübertragung der Anlagenparameter möglich (Internetzugang erforderlich)
- schalltechnische Vermessung (Zertifikat) gemäß der TA-Lärm und der DIN EN 61400-11 durch amtlich bekannte Messstelle nach §§ 26, 28 BImSchG Ergebnis: sehr leise < 45dbA in 22m Entfernung im Mischgebiet</p>
- Technologie geschützt durch mehrere internationale Patentanmeldungen
- hohe Produkt- und Fertigungsqualität "Made in Germany" gewährleisten eine lange Lebensdauer und Investitionssicherheit

Anlagenkonzept EN-Drive® 2000 Serie

langlebiger Aluminiumrotor mit hohem Wirkungsgrad, aerodynamisch optimiert

robustes, schrägverzahntes Hochleistungsgetriebe

optimaler Ertrag durch moderne Sensorik und Regelungstechnik

effiziente Energieübertragung durch langsam laufende Antriebswelle im Mast

Start-/ Stopp - Bedienfeld mit netzunabhängigem Sicherheitssystem

langlebiger, niedertouriger Synchron-Generator im Unterbau der Anlage

Sonderversion mit integrierter, direkt angetriebener Wärmepumpe (bis 2015 in der Erprobung)

vollautomatisches Sicherheitsbremssystem mit Edelstahl-Bremsscheibe

motorischer Schwenkantrieb für perfekte Ausrichtung zum Wind

solide, selbsttragende Mastunterbaukonstruktion mit Stahlrohrmast

hochwertige Schutzlackierung (für Küstenstandorte geeignet)

Fernbedienung und Datenanzeige von zentraler Stelle aus (z.B. Wohngebäude)

Optional: Daten-Fernübertragung

Fundament-Bausatz einschließlich Fundamentplatte für einfache Herstellung der Gründung; alternativ: Fertigfundament lieferbar

13

Anlieferung

Ein vereinfachter Aufbau und Service durch die kompakte Bauweise der Anlagen und schlüsselfertige Anlieferung

Hochschwenken

Der Aufbau der Anlage ist mit Hilfe eines hydraulischen Kippsystems innerhalb von wenigen Minuten möglich

Fundament - Vorbereitung

Anlieferung mit Langanhänger

Hochschwenken mit Hilfe der Mini-Hydraulik

Hochschwenken mit Hilfe der Mini-Hydraulik

Fundament-Bausatz

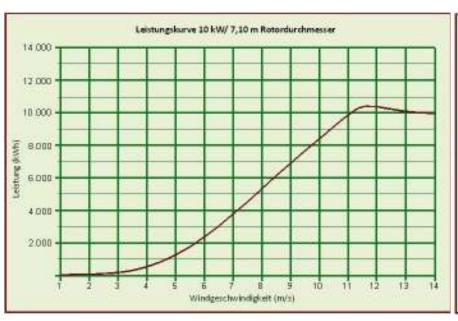
Fundament - Innenkorb

Fundament - Außenkorb

Fundament-Varianten

Fundament - bodenbündig

Fundament - freistehend



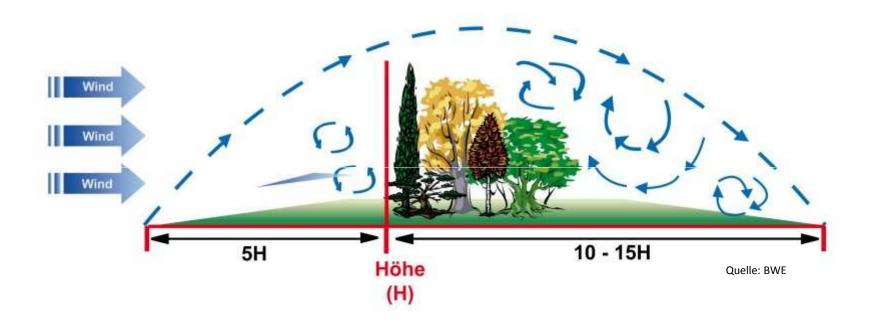
Leistungs-/Ertragskurve EN-Drive Serie – 7,1 m Rotor

Leistungskurve EN-Drive Serie mit 7,1 m Rotor

Jahresertragskurve EN-Drive Serie mit 7,1 m Rotor

Ertrag & Wirtschaftlichkeit

Strompreisentwicklung bei 4% Preissteigerung EVU


(bei Annahme aktueller Strompreis, netto 0,23 Ct/kWh)

Strompreisprognose:	Laufz. (Jahre)	4 % / Jahr	Ct/kWh
2013	0	0,230	0,239
2014	1	0,239	0,249
2015	2	0,249	0,259
2016	3	0,259	0,269
2017	4	0,269	0,280
2018	5	0,280	0,291
2019	6	0,291	0,303
2020	7	0,303	0,315
2021	8	0,315	0,327
2022	9	0,327	0,340
2023	10	0,340	0,354
2024	11	0,354	0,368
2025	12	0,368	0,383
2026	13	0,383	0,398
2027	14	0,398	0,414
2028 Laufzeit 15 Jahre	15	0,414	0,431
2029	16	0,431	0,448
2030	17	0,448	0,466
2031	18	0,466	0,485
2032	19	0,485	0,504
2033 Laufzeit 20 Jahre	20	0,504	0,524
Mittelwert 15 Jahre:		0,335	
Mittelwert 20 Jahre:		0,356	

Ertrag & Wirtschaftlichkeit

Turbulenzen durch Hindernisse

Standortbedingungen:

Turbulenzen/Windverwirblungen entstehen durch Hindernisse (Gebäude, Bäume). Diese können sich negativ auf den Ertrag / Wirtschaftlichkeit einer Anlage auswirken.

Windmessstation (Wind-Profi)

Jahreswindgeschwindigkeit u. -verteilung als Grundlage für Ertragsrechnungen

Professionelle Windmess- und Aufzeichnungsstation:

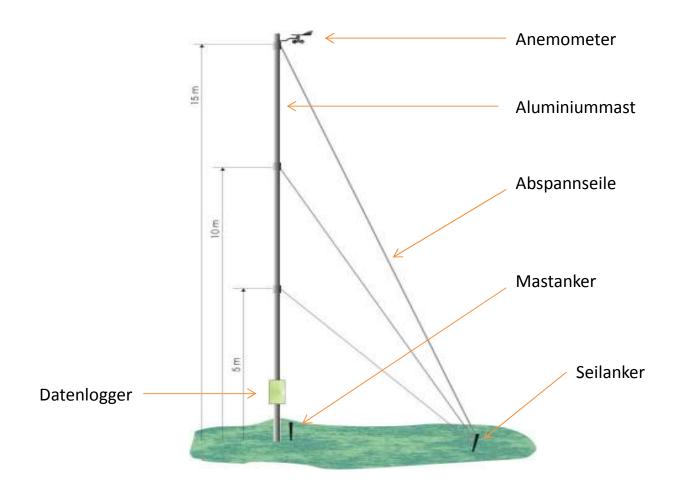
Typen:	Masthöhe:	Montage:	Preise:2
Wind-Profi 10	10 Meter	6-fach abgespannt	980,- Euro
Wind-Profi 15	15 Meter	9-fach abgespannt	1090,- Euro

Lieferumfang:

Aluminiummast + Abspannung, Windsensor, Datenlogger mit Speicherkarte + Kartenleser (Speicherkapazität bis zu einem Jahr), Batterien

Wir bieten unseren Kunden eine Messstation an, die in Windeseile im Selbstaufbau aufgestellt werden kann. In Minuten-Intervallen werden Windrichtung (0 - 360°), Windgeschwindigkeit (1 - 67 m/s) und Temperatur gemessen und gespeichert.

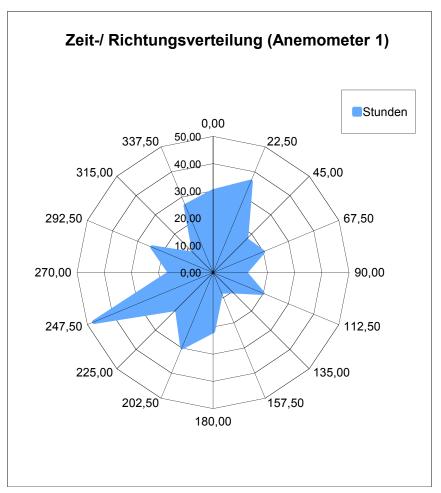
Beim Kauf durch einen Endkunden hat dieser die Möglichkeit beim Kauf einer PSW Kleinwindkraftanlage den Preis für die Windmessstation zu 65% mit dem Anlagenpreis zu verrechnen¹.

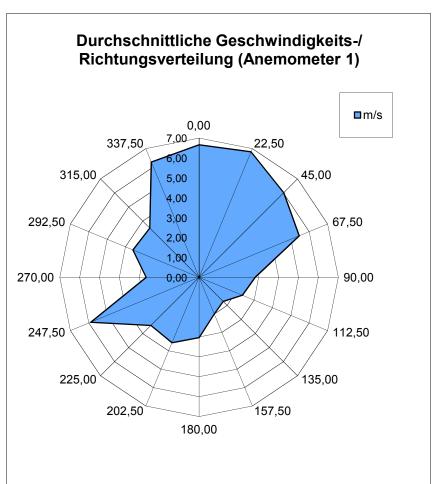

¹Vertriebspartner sind von dieser Regelung ausgeschlossen.

² Alle Preise verstehen sich als Nettopreise, zzgl. 90 € Versandkosten innerhalb Deutschlands

Jahreswindgeschwindigkeit u. -verteilung als Grundlage für Ertragsrechnungen

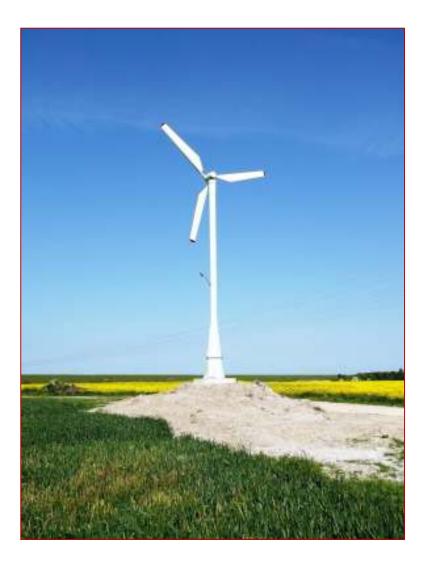
Windmessstation (Wind-Profi)


Jahreswindgeschwindigkeit u. -verteilung als Grundlage für Ertragsrechnungen


Durchschnittliche Windgeschwindigkeit	m/s	Maximale Windgeschwindigkeit	m/s
Messung August		Kunde in Bremerhaven	
Anemometer 1 (15m Höhe)	4,67	Anemometer 1	15,79
Anemometer 2 (10m Höhe)	4,20	Anemometer 2	14,52
Standard Abweichung			
Anemometer 1	2,77	Anemometer 2	2,50
Datum der höchsten Windgeschwindigkeit Anem. 1	09.08.2011		
Uhrzeit der höchsten Windgeschwindigkeit Anem. 1	15:29:26	Anzahl Messungen pro Stunde	60
Datum der höchsten Windgeschwindigkeit Anem. 2	09.08.2011		
Uhrzeit der höchsten Windgeschwindigkeit Anem. 2	13:55:26		
Messzeitraum in Tagen	30		
Ertragsprognose in kWh (15m / 10m)	1.060 / 810	/ 810 - 10kW Anlage mit 7,1m Rotordurchmesser -	

Windmessstation (Wind-Profi)

Jahreswindgeschwindigkeit u. -verteilung als Grundlage für Ertragsrechnungen



Leitfaden

Standort prüfen

- Windgeschwindigkeiten
- Windrichtung
- ➤ Hindernisse (Bäume, Häuser etc.)

Genehmigungslage prüfen

- > Gespräch mit dem Bauamt / der Gemeinde
- > Planungsrechtliche Zulässigkeit etc.
- Umwelt- und Naturschutz

Anlagenauswahl

- Strombedarf / Heizbedarf / Kosten
- Auswahl Bauform / Anlagentyp
- Auswahl Leistungsklasse und Bauhöhe

Herstellerauswahl

- Investitionskosten + Nebenkosten + laufende Kosten
- Bauantragsdokumente / Immissionsschutzunterlagen
- ➤ Geprüfte statische Unterlagen (Anlage + Fundament)
- Garantie / Wartung / Service
- Referenzen

