

Optimierung der Weideleistung – Viel Milch aus Weidegras!

Dr. Clara Berendonk,
Anne Verhoeven,
Ingo Dünnebacke

Leistungsreserven der Weide mobilisieren!

Produktionskosten spezialisierter Milchviehbetriebe 2009/10 in NRW

ct/10 MJ

	Maissilage	Grassilage	Weide
Mittel aller Betriebe	21,4	31,1	16,8
Spannweite			
von	15,6	21,9	10,8
bis	28,0	41,9	25,7

Flächenplanung mit dem "Riswicker Weideplaner"

notwendige Kenngrößen:

- 1. Anzahl Weidetiere
- 2. tägliche Futteraufnahme je Kuh auf der Weide
- 3. standorttypischer Futterzuwachs

Abschätzung der geplanten Futteraufnahme auf der Weide:

Die Futteraufnahme auf der Weide ist abhängig von der Weidezeit und der Zufütterung im Stall.

Als Faustzahl gilt:

Ganztagsweide: bis zu 17 kg TM/Tier und Tag

Halbtagsweide: 8 - 10 kg TM/Tier und Tag

Siestaweide: 1 kgTM/Tier und h

Riswicker Weideplaner:

1. Mittlerer Graszuwachs auf dem Dauergrünland im Vegetationsverlauf in den verschiedenen Anbauregionen von Nordrhein-Westfalen

			Vorweide	Frühlings- weide	Sommer- weide	Herbst- weide	Spätherbst- nachweide	Jahres- ertrag
			Mitte März-	Mitte April-	Anf Juni-	_	Anf. OktAnf.	
Wirtschafts-		1	Mitte April	Anf. Juni	Mitte Aug.	Ende Sept.	Nov	
weise	Region	Lage		kg T	M-Zuwach	s/Tag		dt TM/ha
	Niederungslagen	frisch	30	95	60	50	20	125
		trocken	30	80	50	40	20	107
konventionell	Übergangslagen	frisch	25	70	50	40	15	99
Konventionen		trocken	20	60	40	30	15	81
	Mittelgebirge	frisch	10	60	50	30	5	83
		trocken	10	50	35	25	5	65
	Niederungslagen	frisch	20	70	55	40	15	101
		trocken	20	60	40	35	15	83
ökologisch	Übergangslagen	frisch	15	60	45	40	10	86
okologisch		trocken	15	55	35	35	10	74
	Mittelgebirge	frisch	10	55	45	35	5	79
		trocken	10	45	35	25	5	62

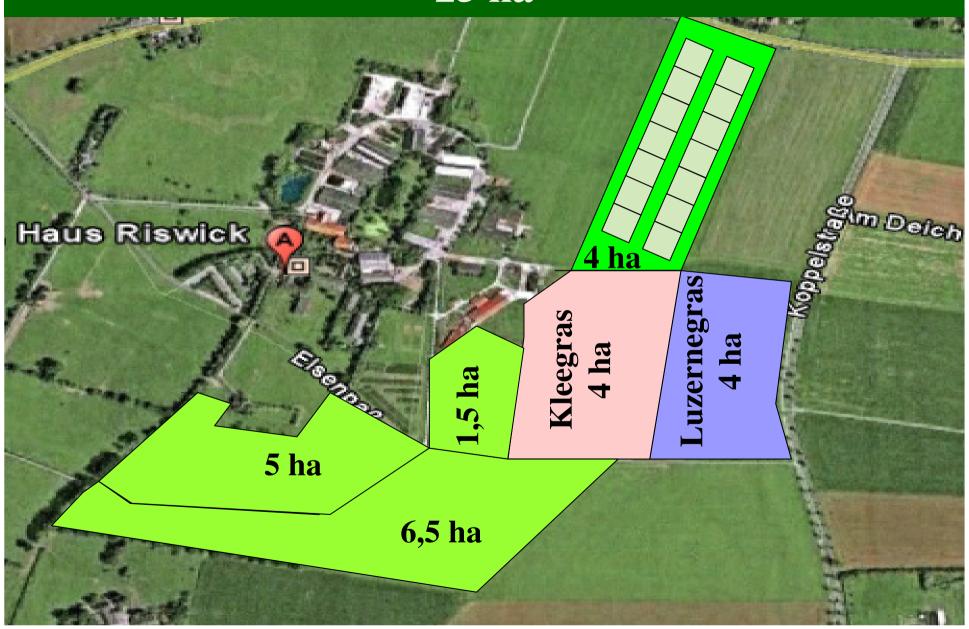
Riswicker Weideplaner:

2. Flächenbedarf/Kuh im Vegetationsverlauf in Abhängigkeit von den Wachstumsbedingungen bei Ganztagsweide

Annahme: Nettoweidefutteraufnahme: 15 kg TM/Kuh und Tag, 20 % Weiderest

			Vorweide	Frühlings- weide	Sommer- weide	Herbst- weide	Spätherbst- nachweide
			Mitte März-	Mitte April-	Anf Juni-	Mitte Aug	Anf. OktAnf.
			Mitte April	Anf. Juni	Mitte Aug.	Ende Sept.	Nov
Wirtschafts-							
weise	Region	Lage		Fläche	nbedarf, ha	/Kuh	
	Niederungslagen	frisch	0,60	0,19	0,30	0,36	0,90
		trocken	0,60	0,23	0,36	0,45	0,90
konventionell	Übergangslagen	frisch	0,72	0,26	0,36	0,45	1,20
Konventionen		trocken	0,90	0,30	0,45	0,60	1,20
	Mittelgebirge	frisch	1,80	0,30	0,36	0,60	3,60
		trocken	1,80	0,36	0,51	0,72	3,60
	Niederungslagen	frisch	0,90	0,26	0,33	0,45	1,20
		trocken	0,90	0,30	0,45	0,51	1,20
ökologisch	Übergangslagen	frisch	1,20	0,30	0,40	0,45	1,80
okologisch		trocken	1,20	0,33	0,51	0,51	1,80
	Mittelgebirge	frisch	1,80	0,33	0,40	0,51	3,60
		trocken	1,80	0,40	0,51	0,72	3,60

Riswicker Weideplaner:



3. Optimale Besatzdichte im Vegetationsverlauf in Abhängigkeit von den Wachstumsbedingungen bei Ganztagsweide

Annahme: Nettoweidefutteraufnahme: 15 kg TM/Kuh und Tag, 20 % Weiderest


			Vorweide	Frühlings- weide	Sommer- weide	Herbst- weide	Spätherbst- nachweide			
		Mitte März-	Mitte April-	Anf Juni-	Mitte Aug	Anf. OktAnf.				
Wirtschafts-	1	Mitte April	Anf. Juni	Mitte Aug.	Ende Sept.	Nov				
weise	Region	Lage	opt. Besatzdichte: Tiere/ha:							
	Niederungslagen	frisch	1,7	5,3	3,3	2,8	1,1			
konvontionall		trocken	1,7	4,4	2,8	2,2	1,1			
	Übergangslagen	frisch	1,4	3,9	2,8	2,2	0,8			
konventionell		trocken	1,1	3,3	2,2	1,7	0,8			
	Mittelgebirge	frisch	0,6	3,3	2,8	1,7	0,3			
		trocken	0,6	2,8	1,9	1,4	0,3			
	Niederungslagen	frisch	1,1	3,9	3,1	2,2	0,8			
		trocken	1,1	3,3	2,2	1,9	0,8			
#lealaciach	Übergangslagen	frisch	0,8	3,3	2,5	2,2	0,6			
ökologisch		trocken	0,8	3,1	1,9	1,9	0,6			
	Mittelgebirge	frisch	0,6	3,1	2,5	1,9	0,3			
MWW LISMICK UE		trocken	0,6	2,5	1,9	1,4	0,3			

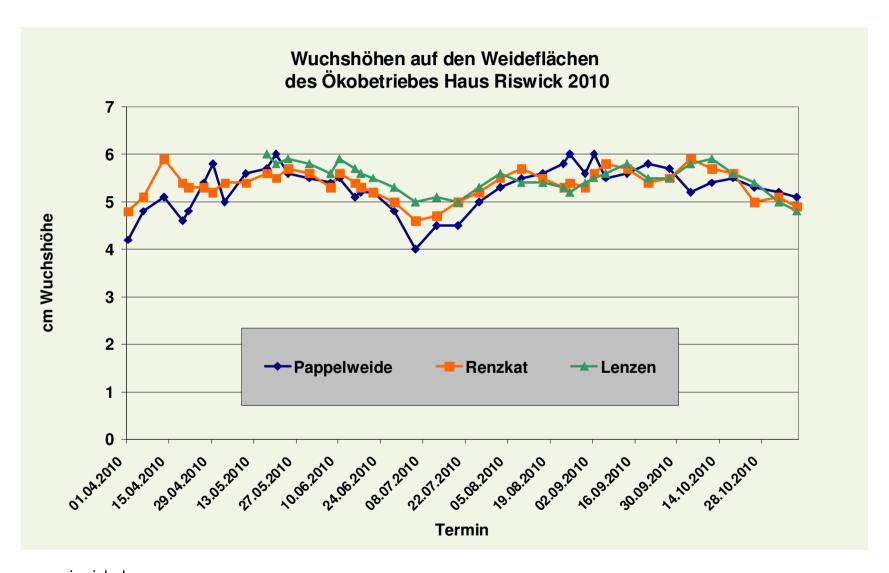
Weidefähige Grünland- und Ackerfutterflächen: 25 ha

Flächenplanung 2010

Zuwachskontrolle:

Regelmäßige Aufwuchshöhenmessung dient der Kontrolle des Futterzuwachses

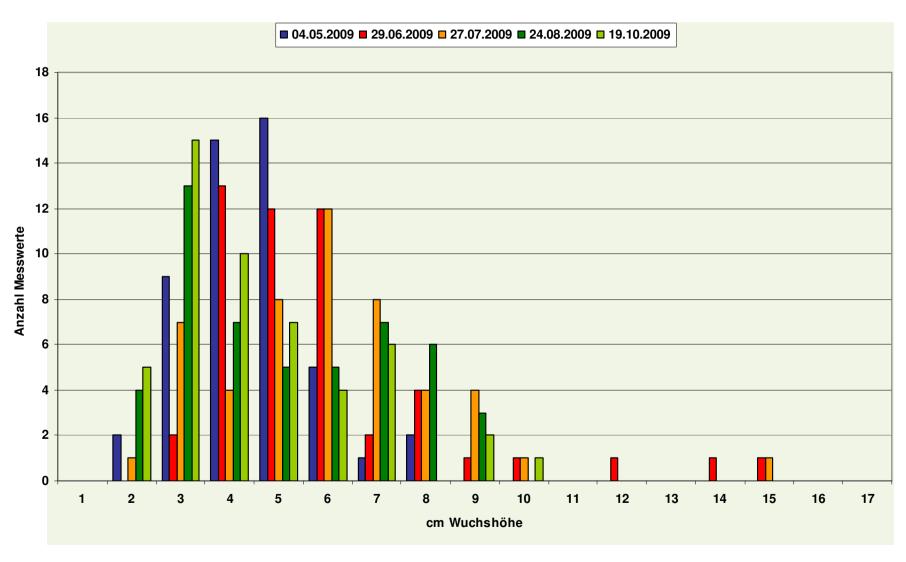
Mit Herbometer (optimal 5 -6 cm).....



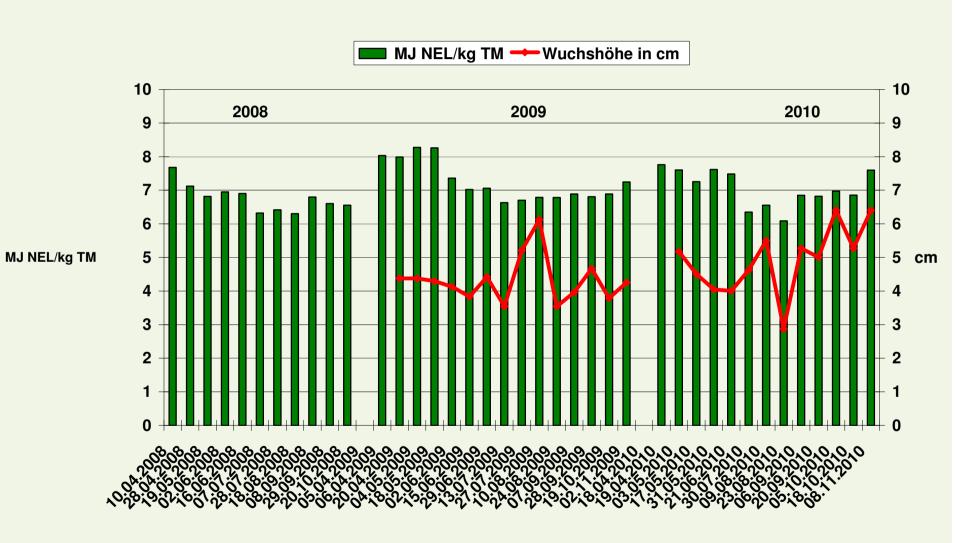
.....oder Zollstock (optimal 6-7 cm)

www. riswick.de

10



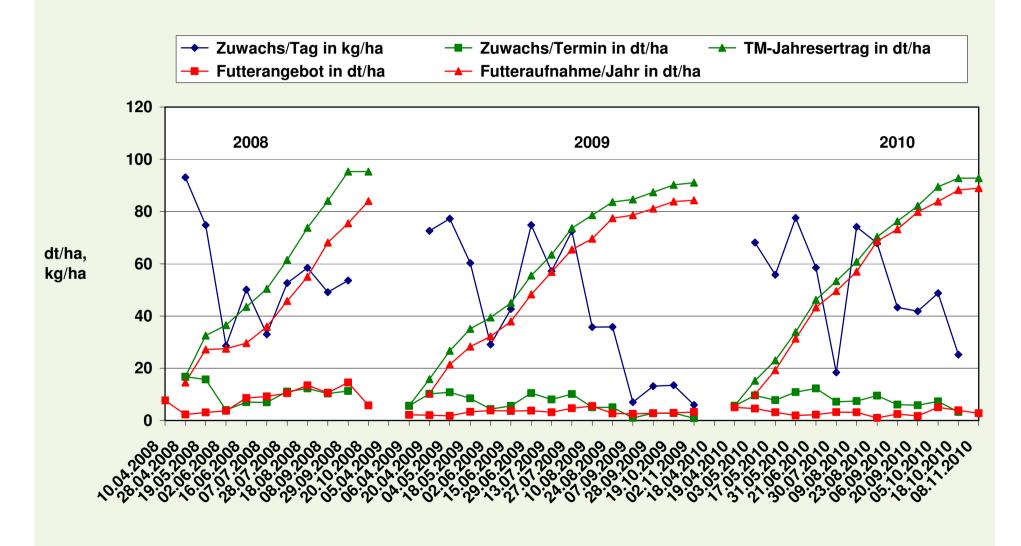
Zuwachskontrolle:



Ökobetrieb Haus Riswick Wuchshöhe in der Lenzenweide 2009

Energiekonzentration und Aufwuchshöhe auf der Kurzrasenweide im Ökobetrieb von Haus Riswick, 2008 - 2010

Zuwachskontrolle:



Versuchsanstellung zur Messung der Zuwachsraten auf der Weide mittels Weidekörben

Zuwachsraten auf der Kurzrasenweide im Ökobetrieb von Haus Riswick, 2008 - 2010

Kurzrasenweide "Haus Riswick"

Nettoertrag	2008	2009	2010
TM, dt/ha	84,0	84,3	90,0
MJ NEL/kg TM	6,75	7,07	7,15
MJ NEL/ha	56.700	59.600	64.350

Aktuelle Versuchsfragen 2011:

1. Eignung von Luzerne und Kleegras zur Überbrückung von Futterengpässen

Aktuelle Versuchsfragen 2011:

- 2. Prüfung der Beweidungseignung unterschiedlicher Sortentypen des Deutschen Weidelgrases in Abhängigkeit von:
 - Reifegruppe
 - Schossneigung
 - Zuckergehalt

Zwischenfazit:

- Kurzrasenweide aus pflanzenbaulicher Sicht -

Der betriebsspezifische Weideplan sollte vor Vegetationsbeginn berechnet werden auf der Basis von

- 1. Tierzahl
- 2. standorttypischem Futterzuwachs
- 3. täglicher Futteraufnahme je Kuh auf der Weide
- 1. Die Zuwachskontrolle mit Herbometer (ggf. Zollstock) muss regelmäßig erfolgen, um die Flächenzuteilung witterungsspezifisch anzupassen besonders wichtig im April-Mai-Juni.
- 2. Bei optimaler Wuchshöhe von 5-6 cm sind über die gesamte Vegetationsperiode Energiekonzentrationen von über 6,5 MJ NEL/kg TM zu gewährleisten, im Mai auch über 7 MJ NEL.
- 3. Zur Überbrückung von Futterengpässen in Trockenperioden haben sich Kleegras und insbesondere Luzernegras bewährt.
- 4. Anpassungsstrategien:

Anpassungsstrategien:

- bei zu geringem Viehbesatz:
 - Erhöhung des Schnittflächenanteils und Reduktion der zugeteilten Weidefläche oder
 - Reduktion der Zufütterung im Stall und Ausdehnung der Weidezeit
- bei zu hohem Viehbesatz:
 - Reduktion des Schnittflächenanteils und Ausdehnung der zugeteilten Weidefläche oder
 - Erhöhung der Zufütterung im Stall und Reduktion der Weidezeit
- Hinweis:
 - Je höher die Zufütterung im Stall, desto schlechter die Futterausnutzung auf der Weide, desto höher die Weidereste, desto schwieriger das pflanzenbauliche Management der Kurzrasenweide.

Versuch im Ökobetrieb 2010:

Hypothese:

Unter den Bedingungen der Kurzrasenweide lassen sich hohe Weideleistungen realisieren. Die begrenzten Möglichkeiten der Zufütterung erhöhen die Mobilisation von Körperreserven, besonders bei frischmelken Kühen und Färsen.

Fragestellungen:

- In welchem Maße beeinflusst eine fixe Kraftfutterergänzung Milchleistung und Gesundheit der Tiere?
- Wie ist die Kraftfuttereffizienz zu beurteilen?

Weideversuch im Ökobetrieb 2010:

Einfluss der Kraftfutter-Zufütterung bei Ganztagsweide bzw. Vollweide im Rahmen der Kurzrasenweide in ökologisch wirtschaftenden Milchviehbetrieben

Versuchsaufbau

- Kurzrasenweide: 5 bis 7 cm Wuchshöhe
- zwei Gruppen á 20 Kühe
- ganztägiger Weidegang in beiden Gruppen

Weidegruppe:

unterstellt: 17 kg TM Futteraufnahme aus Weide

⇒ reicht für 25 kg ECM/Kuh/Tag

Zufuttergruppe:

Kraftfutter: nach den Melkzeiten je 2 kg Kraftfutter/Kuh= 4 kg Tier/Tag

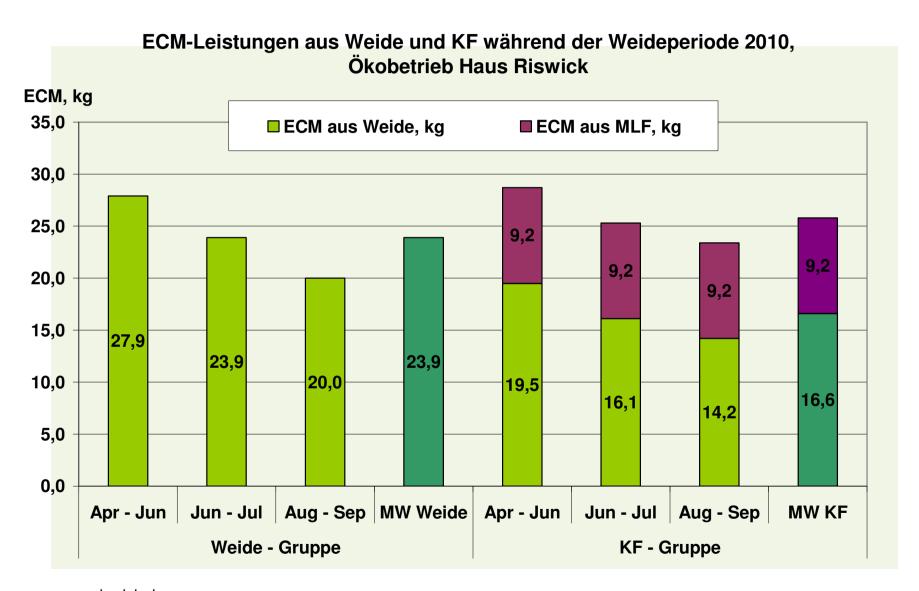
Leistung der Weide- und KF-Gruppe, Weideperiode 2010 (April – Oktober)

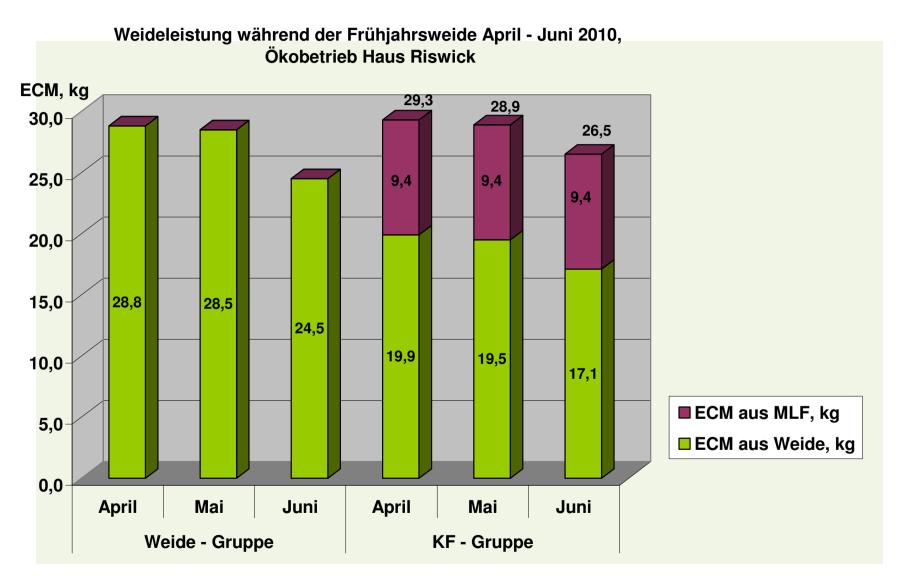
Gruppe	Lakt- Nr.	Lakt Tag	Milch,	Fett,	Pro- tein, %	Zellen, i. 1.000	Harn- stoff, ppm	ECM,	ECM aus GF bzw. Weide, kg
Weide	2,8	149	24,1	3,93	3,19	107	359	23,5	23,5
KF 4 kg	2,9	156	25,8	4,03	3,26	143	343	25,5	16,3

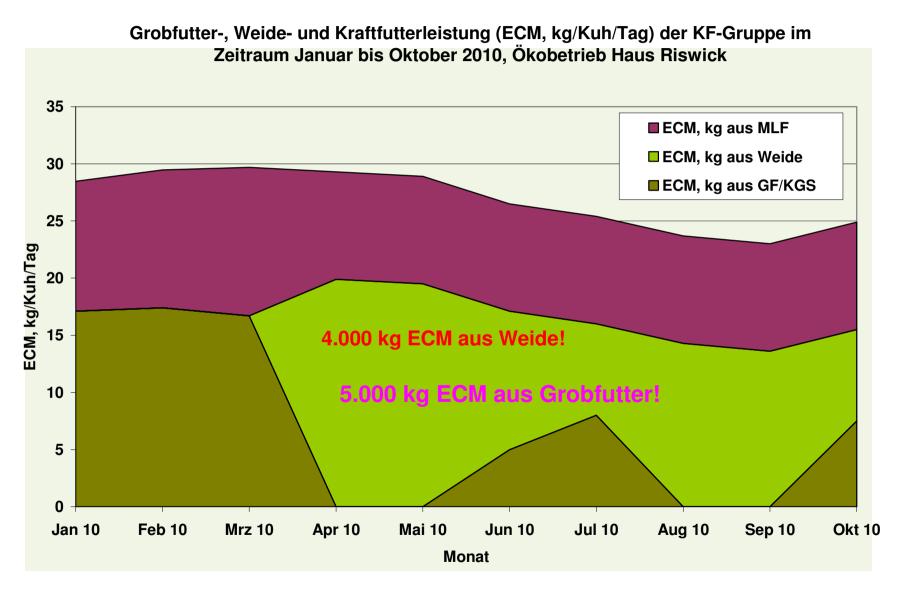
➤ Nettoweideleistung Basis Weidegruppe von April – Oktober 2010: 11.025 kg ECM/ha Weide

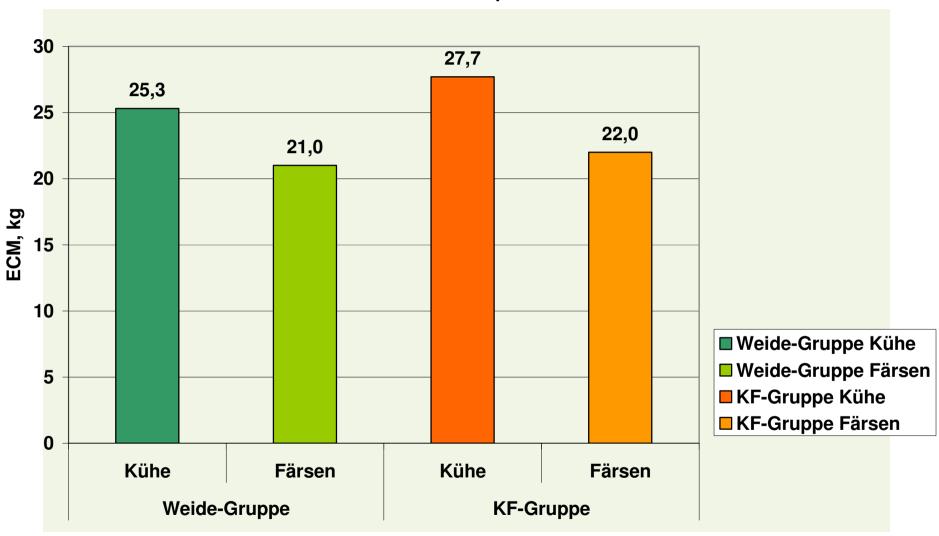

Nettoweideleistung und Flächenproduktivität 2010 – Weideversuch mit 25 ha

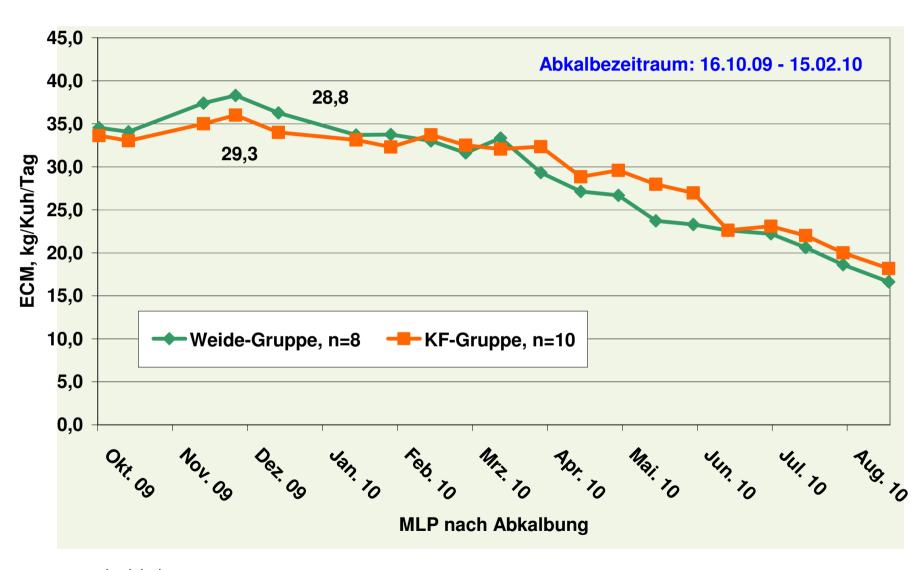
Basis: Leistungsdaten im Durchschnitt der beiden Versuchsgruppen (Weide + KF)


Nettoweideleistung ohne Gewichtsverlust	9.091 kg ECM/ha Weide
Gewichtsverlust = 43 kg im Durchschnitt beider Gruppen	- 708 kg ECM/ha Weide
Nettoweideleistung incl. Gewichtsverlust	8.383 kg ECM/ha Weide
Ernteleistung = Silageproduktion incl. 20% Verluste	+ 1.995 kg ECM/ha Weide
Flächenproduktivität	10.378 kg ECM/ha Weide

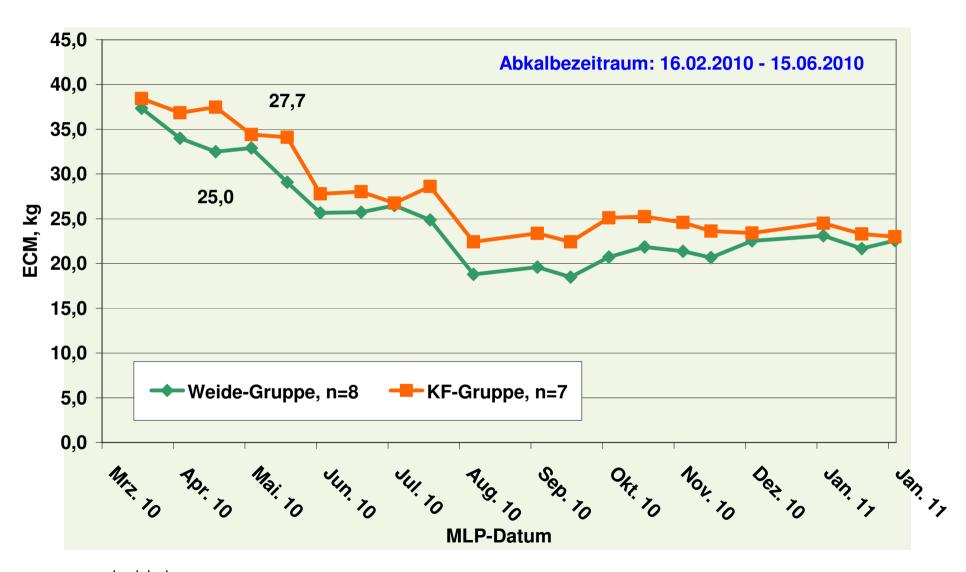

ECM-Leistung der Weide- und KF-Gruppe während der Weidephase April - Oktober 2010, Ökobetrieb Haus Riswick



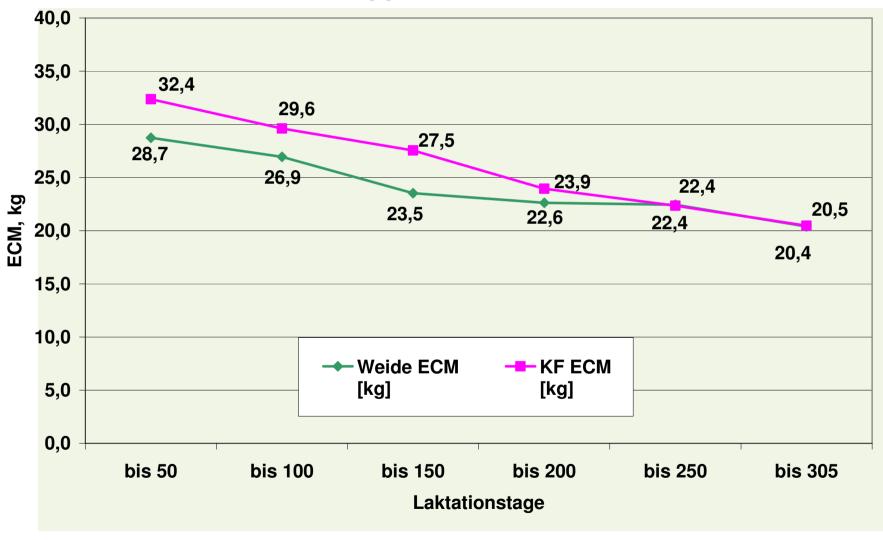




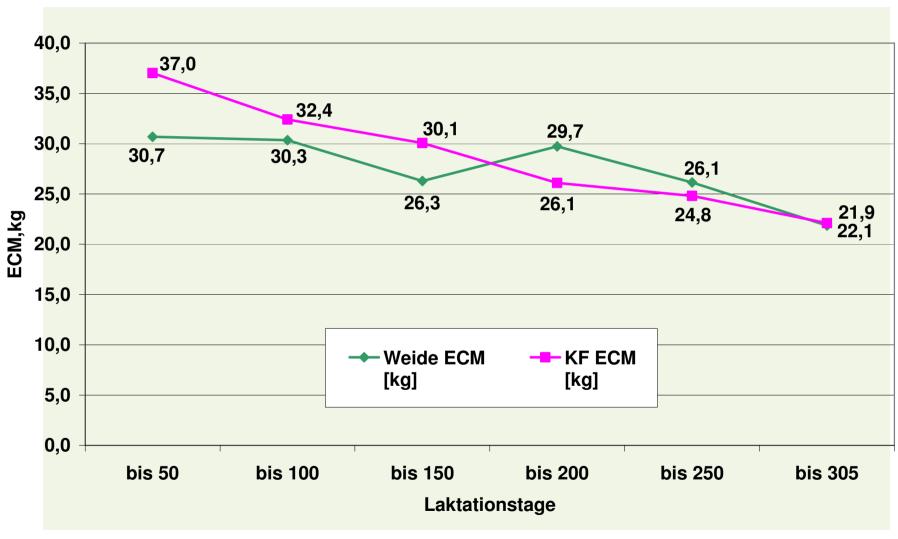
ECM-Leistung (kg/Tier/Tag) bei Kühen und Färsen der Weide- und KF-Gruppe während der Weideperiode 2010



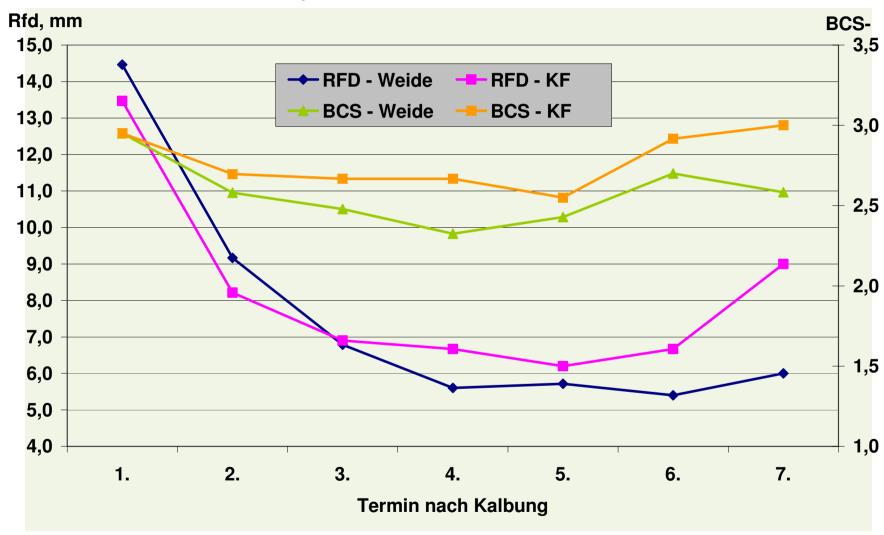
Laktationskurven der Herbst-Winter-Abkalber 2009/2010, Ökobetrieb Haus Riswick



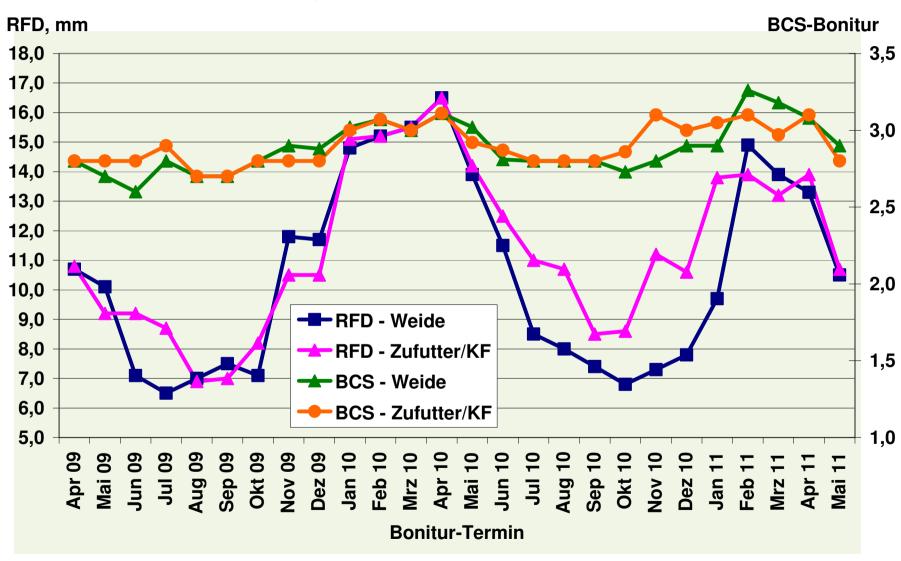
Laktationskurven der Frühjahrsabkalber 2010, Ökobetrieb Haus Riswick



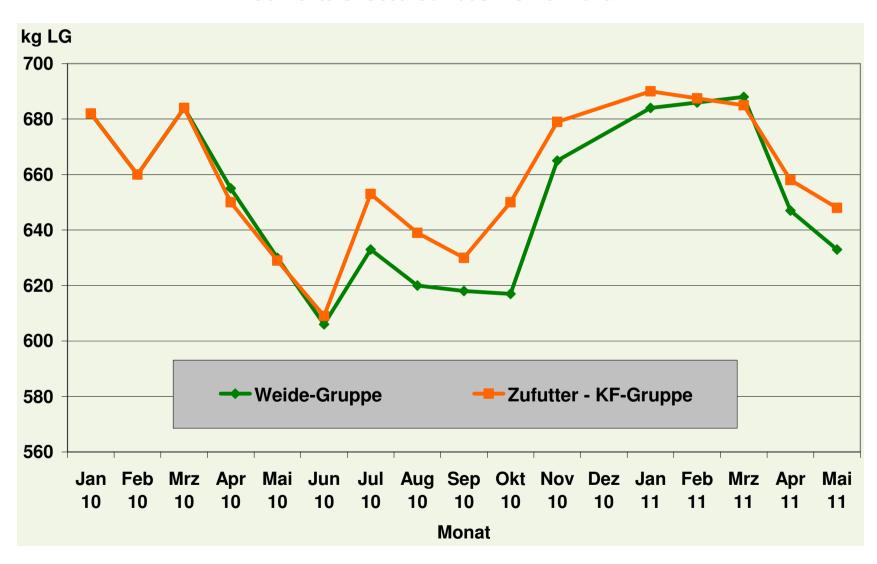
ECM-Leistung der Weide- und KF-Gruppe während der Weideperiode 2010 in Abhängigkeit vom Laktationsstadium



ECM-Leistung der Weide- und KF-Gruppe während der Frühjahrsmonate (April bis Juni 2010) in Abhängigkeit vom Laktationsstadium



Körperkondition: Rfd- und BCS- Werte in Abhängigkeit vom Laktationsstadium, Weideperiode 2010, Ökobetrieb Haus Riswick



BCS und Rfd-Werte - April 2009 bis Mai 2011, Ökobetrieb Haus Riswick

Gewichte Ökobetrieb Haus Riswick 2010/11

Fazit aus dem Weideversuch 2010

- → Nur aus Weidegang gut 23 kg ECM; 28 kg abfallend auf 20 kg ---> > 8.000 kg ECM/ha
 Weide Nettoweideleistung incl. Gewichtsverlust = > 10.000 kg ECM/ha Flächenproduktivität
- → Bei Laktationsbeginn werden 30 kg ECM nur aus Weide erzeugt
- → Um 3,5 kg ECM höhere Milchmenge durch KF-Ergänzung in den ersten 150 Laktationstagen
- Mehrleistung durch KF auch während Frühjahrsweide
- Zweite Laktationshälfte kein Einfluss von KF auf Milchleistung
- → Hohe, schwankende Milchharnstoffgehalte (Trockenheit: < 200 ppm, Herbst: > 400 ppm)
- → Leistungseinbußen aufgrund geringerer Weidefutteraufnahmekapazität bei Färsen in beiden Versuchsgruppen
- → Körpersubstanzabbau mangelnder Körperreserveaufbau gegen Laktationsende Weidekühe stärker betroffen

Weideversuch im Ökobetrieb 2011:

Einfluss der leistungsabhängigen Kraftfutter-Zufütterung bei Ganztagsweide bzw. Vollweide im Rahmen der Kurzrasenweide in ökologisch wirtschaftenden Milchviehbetrieben

Versuchsaufbau

- Kurzrasenweide: 5 bis 7 cm Wuchshöhe
- zwei Gruppen á 20 25 Kühe
- ganztägiger Weidegang in beiden Gruppen

Weidegruppe:

- unterstellt: 17 kg TM Futteraufnahme aus Weide
 - ⇒ reicht für 25 kg ECM/Kuh/Tag im Frühjahr
 - ⇒ reicht für 23 kg ECM/Kuh/Tag im Sommer
 - ⇒ reicht für 21 kg ECM/Kuh/Tag im Herbst

Zufuttergruppe/KF-Gruppe:

- Kraftfutter: nach den Melkzeiten je max. 2,5 kg Kraftfutter/Kuh = 5 kg KF Tier/Tag bis zum 170. Laktationstag tierindividuell und leistungsabhängig über Transponderstationen
- Färsen: Milchleistungen für KF-Gaben (max. 4 kg/Färse/Tag) um 3 kg ECM reduziert
- Bis zum 50. LT Angebot der KF-Höchstmenge von 4 bzw. 5 kg/Tier/Tag unabhängig von ECM-Leistung

Leistung der Weide- und KF – Gruppe im April + Mai 2011

Gruppe	LaktNr.	LT	Milch, kg	Fett, %	Protein, %	Zellen, i. 1.000	Harnstoff, ppm	ECM, kg		ECM aus Weide, kg
Weide	2,6	144	29,6	4,03	3,19	147	235	29,2	0,0	29,2
KF	2,9	138	30,3	3,89	3,15	139	224	29,3	2,2	24,2

Zwei Strategien

1. Hohes genetisches Milchleistungspotenzial

- > 8.000 kg Milchleistung/Kuh/Jahr
- saisonale Abkalbung im Herbst/Winter
- → Hochlaktationphase wird im Stall energetisch ausgefüttert!
- → Vollweide ab Frühjahr → → weiterer Laktationsverlauf einhergehend mit dem Vegetationsverlauf der Kurzrasenweide.

Kosten für Technik der "Intensiven Fütterung" im Stall (Winter) einkalkulieren!

2. Geringes genetisches Milchleistungspotenzial

- = 6.000 kg Milchleistung/Kuh/Jahr
- saisonale Abkalbung im Frühjahr!
- → Hochlaktation in der Weide-Frühjahrsphase mit jungem, energiereichem Frühjahrsaufwuchs → → Laktationskurve passt sich dem Vegetationsverlauf an!

LOW-INPUT-System = keine oder geringe Technik- und Maschinenkosten für aufwändige Winterfütterung im Stall.

Ziel beider Systeme:

Maximale Ausnutzung der kostengünstigen, qualitativ hochwertigen Weide

= Grobfutterkostensenkung = Ökonomischer Anspruch!

Betriebsindividuell müssen die beiden Strategien ökonomisch kalkuliert werden!

Fazit (verändert nach Richard Neff, LZ Eichhof, Hessen)

- Kurzrasenweide kombiniert grundsätzlich hohe Flächenleistung mit reduziertem Kosten- und Zeitaufwand!
- Grasnarben reagieren durchweg positiv!
- Zentrale Komponente ist die exakte Flächenzuteilung!
- Das auf Futterkonkurrenz basierende System führt zwangsläufig zu geringerer Einzeltierleistung ---> Ziel: Hohe Milchleistung je Hektar!
- Signifikante Leistungseinbußen sind durch Produktionskostenersparnis zu kompensieren!
- Kurzrasenweide bietet Potential für deutliche Senkung der Grundfutterkosten!
- Aufgrund erheblicher Interaktionen zwischen Weidesystem, Standort, Pflanzenbestand, Betriebsleiterneigung, usw. ist die Wirtschaftlichkeit des Verfahrens nur betriebsindividuell zu betrachten!

